
A Semantic Web Architecture for Advocate Agents to
Determine Preferences and Facilitate Decision Making
Wolfgang Ketter

RSM Erasmus University
Rotterdam, the Netherlands

wketter@rsm.nl

Arun Batchu
netrii.com

Eden Prairie, USA

arun@acm.org

 Gary Berosik
Thomson Reuters R&D

Eagan, USA
gary.berosik@thompsonreuters.com

Dan McCreary
Dan McCreary & Associates

St. Louis Park, USA

dan@danmccreary.com

Abstract
The world-wide-web (WWW) today consists of distinct, isolated
islands of data and metadata. In the near future we expect the
availability of a critical mass of data and metadata for use by
intelligent agents that act on behalf of human users. These agents
would identify, propose and capture new opportunities to assist
human users in satisfying their goals, by traversing and acting on
this semantically rich and abundant information. We envision a
new class of agents, their networks and their communities that
exist for the sole purpose of serving as their human “master’s”
Advocates – Advocate Agents. Advocate Agents learn a human's
goals and preferences, collaborate with other agents, mine
semantic content, identify new opportunities for action, propose
them and finally transact them, while always keeping the human
“in-the-loop.” This paper discusses this class of distributed,
intelligent, Advocate Agents, their potential uses, and proposed
architectures and techniques that provide a conceptual framework
for these networked agent societies to collaborate in the
achievement of their human user's goals.

Categories and Subject Descriptors
D.2.11 [Software Architectures]; I.2.11 [Distributed Artificial
Intelligence] Intelligent Agents, Multi-Agent Systems, Business
Networks; K.4 [Computers and Society] Organizational Impacts,
E-commerce

General Terms
Architecture, Algorithms, Economics, Standardization, Theory

Keywords
Preferences Elicitation, Personalization, Recommendation Agents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICEC’08, August 18-22, 2008, Innsbruck Austria.
Copyright 2008 ACM 1-58113-000-0/00/0004…$5.00.

1. Introduction
Many managerial decisions involve multiple objectives. For
instance when purchasing products via a real-time business
network, a procurement manager may want to buy products from
the retailer who offers the lowest price, the fasted shipping time,
the lowest weight, and has the best reputation in terms of
reliability, customer service, and trust. We can immediately see
that the lowest price and fastest shipping time are conflicting
objectives and we need to perform a cost-benefit analysis on
which dimension(s) we are willing to make sacrifices. In addition,
the problem is compounded by other factors. These include the
sheer number of different online retail stores which might offer
this kind of product, as well as other websites such as blogs and
news sites that might offer information about the product, such as
usability, and comparisons to similar products. The latter might
even suggest buying a different product altogether. In such
circumstances, a consumer is faced with an overload of
information related to making a decision.
Herbert Simon coined the term bounded rationality [1] to refer to
the fact that the human mind has limited cognitive abilities.
Humans tend to use approximate methods, such as rules of thumb
stemming from their own experience, to deal with most decision
problems. Human decision makers often seek solutions that are
satisfactory rather than optimal. These rules of thumb are refereed
in the literature as heuristics [2] and are often well adapted to the
structure of their knowledge about the environment. For example,
when a prospective graduate student is looking for a PhD research
position, he might focus his search on places which are ranked
highly regarding their quality of research, and only then consider
different characteristics such as income or the quality of life in the
city where the university is situated.
The goal of our work is to research, develop, and use highly
personalized agents to complement the cognitive limitations of the
human mind to facilitate the decision making process (including
the gathering of information and recommendation of actions).
These agents work in a collaborative manner with users to
accomplish their goals. To work effectively and efficiently with a
human user, the agents must learn the human user’s interests,
habits and preferences (as well as those of their communities) [3].
In the online retail example, recommendations can be given as to
what to buy (product-brokering) and from whom to buy
(merchant-brokering), based on customer criteria. After the
discussion of relevant related literature, we present a unique and
innovative design of the business and technical architectures for
Advocate Agents, and describe the challenges of implementing
them. We conclude with a roadmap for future work.

1

2. Related Work
Much research is published on personalization and
recommendation agents regarding customer preference modeling
[4-6], based on prevalent Internet approaches. Currently there are
three main streams of research, each dependent on how customer
preferences are modeled: via vector similarity (collaborative and
content-based filtering), probability (Bayesian), or association
(correlation between user and item). One of the shortcomings of
these research efforts is that they apply agents that represent
clusters of people. That is, recommendations for a specific user
are based on the preferences of many different users [7, 8] (such
as Movielens.umn.edu and Amazon.com) rather than tailored to
the needs of an individual user. Up until now agent actions have
always been performed on the server side of the processing
architecture rather than the client side (e.g. in the case of a typical
online store application). As a consequence, these agents do not
always act in the best interests of the customer. E.g., a retail agent
might try to convince customers to buy more products that give
the seller a higher profit margin. Further, such agents have little
insight into the human user’s real preferences since they can only
observe those actions related to their competence and performed
on their processing site. We envision a learning Advocate Agent,
residing on the client side, which always supports and promotes
the best interests of its master.
In [9], the authors present e-Butler, a first step toward a customer-
centric architecture, but they have not yet implemented their
architecture. These authors note that HTML is not fit for
semantics, a limitation that is quickly disappearing with the
advent of XHTML, micro-formats and presentation artifacts being
moved into CSS-based display approaches. The authors promote
XML, which is still a good recommendation, but they do not
address RDF or other semantic technologies that we recommend
in our proposed architecture. The e-Butler authors talk about
XML services using SOAP, while REST1 is the alternative web
service approach that we suggest, since it can be more effective
than SOAP-based approaches. In addition, our design leverages
the power of social networks, and encourages the collation of
temporary business relationships to increase negotiation power
with agents from other businesses.
We envision every user having readily-available personal
Advocate Agents that are part of a supportive multiagent
information system [10]. Such agents are semi-autonomous,
always reacting to additional input and feedback from the user.
The currently most prevalent way to interact with a computer is
via direct manipulation [11], a mode of operation in which the
computer waits for specific commands from the user before
performing responsive actions. Our vision is that we will be able
to interact with a computer in a proactive manner, the same way
we interact with people. This vision is based on agents that
proactively collaborate with a user, in a mixed-initiative fashion,
to predict the appropriate next steps that can speed up, and
improve the quality of, a user’s overall decision process. Such
agents are sometimes referred to as expert or interface agents [3,
12]. Relevant examples of proactive email and web retrieval
agents can be found in [13]. Those agents retrieve and present
archived emails to a user if they are similar to current email being

1 REpresentational State Transfer,

http://en.wikipedia.org/wiki/Representational_State_Transfer

written. In other situations, similar agents retrieve archived web
pages that are similar to the one currently being displayed.
In [14], the authors propose that the current hypertext document-
centric web will evolve to include an infrastructure of machine-
readable documents that can be understood and acted upon by
intelligent agents. In the last seven years we have seen significant
developments in progress toward the realization of this vision of
the Semantic Web. We believe that conditions are now ripe for
an explosion of useful Internet-based tools that go beyond simple
keyword search and human-driven information mashups. We
foresee a day in the near future when sophisticated personal
agents will run continuously in the background on our behalf,
exploring, monitoring, filtering, mining, collaborating and
presenting relevant information for our utility, while flexible trust
mechanisms will act to appropriately constrain the autonomous
authority of those agents.

3. Advocate Agent Business Architecture
Advocate Agents do not merely facilitate product or merchant
search, they "get to know their master," meaning the human
decision maker, through initial profiling (sex, age, nationality,
preferences, etc) and by observing the behavior of the decision
maker (and their communities) while performing goal-oriented
actions (e.g., visiting an online retail site, time spent, links
clicked, dates visited, websites visited previously, etc.). Based on
this information, the agents recommend actions (buy this product,
buy from this merchant, read this article, etc), and autonomously
execute some of the decisions the consumer delegated to it (make
a dentist appointment; buy airline ticket; bid on eBay.com, etc.).
In addition to reducing information overload, customers that use
software recommendation agents reduce their workload and
improve the effectiveness and efficiency of their decision making
[15]. These agents represent the preferences of the consumer as
his or her highly tailored "software avatar" in the Internet.
We define the business architecture of Advocate Agents as an
abstract model that satisfies the requirements of Advocate Agents,
independent of selected implementation technologies. Business
architectures transcend and outlive concrete, related realizations
of the vision and technical architectures. While technology
changes at a rapid rate, this abstract model changes less rapidly, in
tune with the rate at which the definition and scope of Advocate
Agents change. Figure 1 displays our business architecture for
Advocate Agents, the modules of which are described below.

3.1 Architecture Module Descriptions
We describe the key modules necessary for an Advocate Agent
and its collaborators to succeed in serving its master. We describe
each module and the role it plays in the overall architecture.

3.1.1 Observation Module
It is clear from the requirements that an Advocate Agent is a
personal champion of a single master. In order to provide a
personalized service, an agent will need to learn its master's
preferences. To learn, it must observe. The observation module
provides the sensory organs of the Advocate Agent. The module's
architecture must allow multiple such organs to collect
information (e.g. web-browsing behavior, e- mail, instant-
messaging etc.) and send it on for further processing.

2

Figure 1: Advocate Agents Business Architecture

3.1.2 Information Retrieval Module
We envision the techniques of Information Retrieval to play a key
role. This module is necessary for the agent to convert potentially
vast amounts of unstructured but valuable information into useful
knowledge.

3.1.3 Knowledge Representation and Inference
Module
This module is responsible for processing raw information into
semantically precise knowledge. This knowledge representation
module is also responsible for collaboration with other agents in
knowledge acquisition and knowledge sharing activities.

3.1.4 Agent Collaboration Module
In order for Advocate Agents to succeed in fulfilling their goals,
they will have to collaborate with other Advocate Agents. This
key module supports agent cooperation capabilities in dealing
with the exchange of information and knowledge.

3.1.5 Recommendation Module
This module comes up with recommendations for the master.
Triggered by either new preferential knowledge about its masters
or new facts, this is the module that searches for new solutions
that might get filtered into recommendations.

3.1.6 Notification Module
When recommendations need to be conveyed to the master (in
preferred ways), this module seeks out the most effective
(possibly multiple) means of performing the notifications, and
carries them out.

3.1.7 High Performance Processing Module
There are many elements of this environment that need to perform
large-scale information processing tasks such as web crawling,
indexing, search result relevance determination, sentiment

analysis, relationship extraction/assessment and related natural
language processing. To allow Advocate Agents to be usably
responsive, much of this type of processing will need to take
place in parallel, in real-time, and to reach successful completion
as quickly as possible. The High Performance Processing module
is responsible for coordinating the execution and completion of
these tasks. It is expected that at least some of this need will be
met by cluster-based, highly parallel and fault-tolerant “cloud
computing“ approaches [16].

3.1.8 Security
Support for security on Advocate Agent platforms are provided
by the security elements of this architecture. Typical security
infrastructure capabilities would include support for trusted
security domains, digital signature handling and public key
encryption/decryption. Security support would be provided to
agent execution platform elements via messaging bus services as
well as to the agents themselves via directly linked software
library components.

3.1.9 Economic dashboards
Users have different roles and associated goals (professional and
private) depending on their situation. Economic dashboards
provide a dynamic perspective of information relating to those
different roles and give rapid feedback regarding Advocate Agent
performance on specific goal-oriented tasks. We envision
economic dashboards as non-intrusive user interfaces that
facilitate tactical and strategic decision making processes.
Dashboards present summarized views of historical economic and
newly gained knowledge, based upon data harvested from the web
using information retrieval and drill-down capabilities. One goal
is to find out if the human decision maker prefers the agent’s
findings and choices compared to their own findings. This
requires validating the goodness of recommendations suggested
by the agent. Users can give explicit feedback to the system to
evaluate the goodness of the findings and suggestions. Such

3

explicit feedback, representing user preference, is then translated
into business rules that enable an agent to know how to best
reason on behalf of the human user in similar future situations.
We envision using a continuous feedback range of numeric
values, e.g. from 1 (not satisfied) to 5 (very satisfied), to record
human preferences.
We hypothesize that, over time, a human decision maker will
delegate an increasing number of decisions to Advocate Agents.
We define this as adjustable autonomy. There is a switching point
for the adaptation of a new technology by users, usually based on
its usefulness and how smoothly the new technology integrates
into daily life. We envision non-intrusive, proactive agents which
will work according to the user’s preferences even when they
have no immediate assignment. Examples of proactiveness
include looking for relevant new trends or recent news, informing
the user about interesting ongoing auctions such as eBay.com,
good deals, etc.

3.2 Infrastructure
In order for Advocate Agents to succeed, mature and scalable
infrastructure elements will be needed.

3.2.1 Communications
Fundamental to meeting business requirements is for agents to
communicate with their peer agents, information sources and their
human masters. Without an empowering means to communicate,
agents will be severely limited in providing optimal
recommendations. The distributed and multi-module computing
nature will require a unifying mechanism – a platform where
existing and new modules can be plugged in and out and be able
to communicate to each other while avoiding point-to-point
knowledge. We propose that the concept of a service Bus is a
good solution for the problem.

3.2.2 Standards Infrastructure
Standards for communication protocol and format will both be
very important for seamless and straightforward exchanges. Such
standards will allow new knowledge to be created and easily flow
among elements of the agent environment. Standard
communications simplify and support flexible information and
knowledge fusion.

3.2.3 Maintaining Transformation Rules
In order for Advocate agents to be successful, an entire developer
community will need to participate in its success. But individual
developers cannot create components that interoperate without
some standards. In order for Advocate agents to be applied, other
services will need to be transformed to use formats that are usable
by those Advocate agents. Transformation rules can be defined
and applied to assist in enabling this.

3.2.4 Computing Infrastructure
Advocate Agents will need to have as small an execution-time
footprint as possible in order to realize the principle of
unobtrusiveness. Apart from the communication infrastructure,
the observation modules will need sensors in all human user
electronic touch-points, including wired and wireless devices,
web browsers and electronic mail. Processing will get intensive at
times, so sufficient hardware resources will be needed.

3.3 Agent Communities and Cloud Support
We envision a proliferation of Advocate Agents that constantly
communicate with each other and form collaborative communities
that collectively answer questions.

3.3.1 Collective Intelligence
Collective Intelligence [15] is a powerful emergent phenomenon
in organic networks such as ant colonies, social networks in
humans and the Internet. A similar phenomenon for Advocate
agents is possible with our proposed architecture. Traditional data
mining methods based on static data many not be effective for
highly dynamic data. The challenge is that, as new assertions
arrive, the training set is constantly altered by an agent [17].
There is, however, no existing standard for classifying assertions
in web pages. In order to effectively build and process local and
global semantic knowledge stores and related information
structures, Advocate Agents need to rely on a wide range of text
and information processing technologies that support what is
termed collective intelligence [18]. These technologies can
provide agents with the ability to collect, relate, summarize,
assess and act upon relevant facts and opinions expressed as
assertions embedded in web content and user behavior. Several
of these technologies are described in the following paragraphs.
Foundational natural language processing technologies that
support this include tokenization, part-of-speech tagging,
syntactic and semantic parsing and tools that ease the definition
and execution of flexible processing pipelines. Such processing
pipelines successively extract and enrich information to support
agent tasks, and the processing components of such pipelines are
often strong candidates for high performance processing
parallelization. Other advanced techniques that build upon these
fundamentals are also available to support agent tasks. These
include making recommendations, discovering information
groups and classification categories, assignment of information
and documents to existing categories and ontologies, focused
search and relevance ranking of results, solution optimization and
document filtering.
There is a range of relevant statistical, machine learning,
information retrieval and text mining techniques that can be used
to address these tasks. Collaborative and other filtering
approaches can be used to develop group preference based
recommendations. Hierarchical, k-means and enhanced word
sense (e.g. via WordNet) clustering techniques can be used to
identify previously unknown categories of information.
Relevance ranking schemes allow effective ordering of search
results. Simpler statistical techniques such as Naïve Bayes
classification are often the most efficient and effective for certain
classification tasks. K-nearest-neighbor techniques can help make
statistically “best” prediction choices. There is also a range of
more computationally intensive statistical techniques including
kernel methods, support vector machines and conditional random
fields that are favored for certain types of classification. This is
just a partial list of the collective intelligence techniques that
Advocate Agents can apply to fulfill their goals. We expect the
full range of these techniques will be regularly applied by
Advocate Agent systems.

3.3.2 Agent Metadata Usage
Our architecture enables agents to participate in a market where
the barriers are very low to non-existent. Such an architecture will

4

empower such markets to exhibit the characteristics of a free
market allowing the most optimal recommendations to be formed
and made to an Advocate Agent's master.

3.3.2.1 Web Crawling for Gathering
The key to this is a very simple database with just two data types:
documents and links. Links are all of the same type (a Universal
Resource Identifier or URI). Each successive page causes a
search that itself generates new searches. If each page has on the
average of N links in it the number of successive iterations
searched scales as: Pages Crawled = (N)interactions .The average
number of links per page is typically between three and four
depending on what document types are included.

3.3.2.2 Resource Description Framework for Representation
We are now seeing another generation of applications being
created to enhance our lives - the web mashup. In this type of
application, if you are not happy with the way a web site arranges
information, you can use the page information to harvest other
facts. For example, consider Wikipedia, and a situation where
each page has a database representation similar to the structure of
the web page, but instead of simple pages and links, the data is
rendered into another type of network – one in which each link is
a fact about the page. These facts can be stored in a mirrored
version of Wikipedia data (e.g., DBPedia2) using a format called
Resource Description Framework (RDF3). RDF takes simple
facts (e.g. from a wiki page) and converts them into assertions in
the form of triples:
[Subject] [Predicate] [Object]

For example, a statement on a page about Berlin Germany such
as: Berlin is the Capital of Germany becomes:
[Berlin] [Capital-Of] [Germany]

Storing these facts in a uniform structure allows queries to be
performed on this dataset. As with web crawlers, an initial query
can fan out and extract additional facts from pages, but there is
one important difference. Unlike linked web pages, RDF
statements require that each fact and link be a URI (e.g., the
[[Capital of]] relationship is a URI in the above example). By
forcing precise and unique relationships to also be unique URIs,
RDF queries can look for relationships between triples that have
not been joined together. This simple and repeatable rule of triples
can generate a complex, arbitrarily large “system of knowledge”.
This semantic "web join" capability allows us to join otherwise
unrelated data stored in general web page content.
RDF triples are stored in structures called "triple stores"
analogous to a single relational database table with three columns.
Triple stores have their own query language called SPARQL4,
which facilitates the creation of "mashups" of data. It does this by
allowing discovery of nodes in separate semantic graphs that
represent the same object. This in turn allows new facts to be
generated from the RDF triples. This ability to generate new-
from-existing knowledge in a machine-readable manner is the
catalyst that allows Advocate Agents to be smart, creating many

2 DBPedia, RDF representation of Wikipedia, http://dbpedia.org.
3 RDF Specification , http://www.w3.org/RDF/
4 Query Language for RDF, http://www.w3.org/TR/rdf-sparql-

query/

exciting possibilities. The new facts are semantically precise,
unpolluted by human-related web artifacts, such as visual
elements, and are “interactionable” by automatons - Advocate
Agents in particular. Table 1 compares the three knowledge
handling approaches, suggesting ways in which agents that use
the public internet will require new tools.

 Relational Web Semantic
Web

Designed
for

Storing and
Joining Tabular
(Rectangular)

Data

Linking
Documents

Inference of
Distributed
Assertions

Metaphor Tables Hypertext Graphs

Search SQL Keywords,
meta data SPARQL

Search
Engine

RBDMS
vendors

Google,
Yahoo,

Microsoft
Triple Store

Table 1. Document Web and Semantic Web Comparison

3.4 Security and Privacy
For an open and collaborative world to thrive, the citizens
participating in that world need to feel safe and secure. The era of
social networking in the digital world has ushered in new
challenges pertaining to the privacy of and security of
information. The next era of Advocate Agents working on behalf
of their human masters introduces even more challenges. We
suggest a few models that will help in address these challenges.

3.4.1 Social Trust and Verification
Digital social impersonation is a significant problem in human
social networks where a human being presents a benign and
friendly interface to another to win her or her trust, but with
malicious intent. With agents, we predict that the same
phenomenon will happen and we need to develop ways to
counteract these impersonations. In social networks, trust is
usually built on friend-of-a-friend (FOAF) connections. Using the
Semantic Web, FOAF seems a natural fit to develop trust
networks. The tolerance of the trust levels can be then tuned from
a very low 1 (direct) degree of separation to n degrees of
separation. Organizations like http://www.Garlik.com are doing
interesting work in this arena.

3.4.2 Private and Public Firewalls
Every agent should be able to identify (“have a notion of”) the
private and public information allowed by the human master to be
used by agents in support of knowledge sharing and learning
tasks. Each human user will have different degrees of tolerance
and boundaries of what she considers private or public. Therefore
the agent infrastructure needs to accommodate these notions. It is
possible that an agent’s capability to learn and acquire new,
relevant knowledge pertaining to satisfaction of the master’s goals
could be affected by the policies of privacy firewalls.

3.4.3 Behavioral Inferences
Another manner of protecting the privacy of sensitive information
is to anonymize the subject and object of sensitive elements and
assess its affects on semantic inference quality. For example, if it
can be inferred that people who like solid state drives also like
shopping on amazon.com, it might be that the personal
information of Wolf and Arun (whose behaviors led to the

5

http://www.garlik.com/
http://dbpedia.org/

inference) may be insignificant and hence anonymized without
affecting the quality of the inference.

3.4.4 Central Authorities and Open Identifications
Another approach that can be borrowed from the web world is the
concept of Certificate Authority (CA). It is possible that a trust
system can be developed where Advocate Agents have a means of
trusting a certificate issued by a CA, a chain of CA’s, or both. Of
relevance is a recent surge in open identity systems, such as
http://OpenId.net, that apply a decentralized identification
mechanism based on open standards. Advocate Agents could tap
into this approach and use a mutual trust system to build
communities.

4. Advocate Agent Technical Architecture
Here we describe several of the current and future technologies
that will be required to achieve the vision of Advocate Agents.

4.1 Trends
In the 1990's and the early 21st century, content was king. As the
Internet expanded in scope geographically as well as in volume
(number of nodes), content became more freely available over a
wide variety of websites. The Internet started to develop a "long
tail" [19] where boutique websites contained very specialized
information. The ability to reach those sites became very
important, so linkages among the sites became correspondingly
important. Search engines like Google that leverage the rich
relationships between the content became the hub of Internet
activity. The resulting improvement of relevance and recall of
sites by search engines meant that finding relevant information
became easier than ever. Infrastructure improvements like
ubiquitous broadband internet access all over the world meant that
a massive number of diverse knowledge workers had access to
highly specialized information sources. The human collective
now needed a chance to exchange information - not only the
ability to read (Web 1.0) but also the ability to exchange
information on the web (Web 2.0). This urged websites to
become more "humane", driving innovations such as the 'editable
web' (the rise of the Wiki – e.g., Wikipedia), social bookmarking
(e.g., http://del.icio.us), community sites (e.g., Flickr, MySpace
and FaceBook), collaborative sites and technologies (e.g., Google
Apps, Microsoft Sharepoint), and a host of other open source
Content Management Systems.
The Web browser, which was initially designed as a document-
centric window into the web, became an application platform of
the web. Technologies like DHTML (Dynamic HTML) and
AJAX (Asynchronous JavaScript and XML) make sites very
interactive and user-friendly. Instant Messaging over the web is
an essential way to connect with other users. User experience on
the web has reached levels where the Web is the primary source
of finding, providing and sharing information. All of the
mentioned sites utilize the tremendous power of collective
intelligence - the "wisdom of crowds". Standardization of
empowering technologies like RSS and Atom Publishing Protocol
(APP) permit "web mashups" (e.g. Google Maps and Yahoo
Pipes). Web users have vast amounts of information at their
fingertips; but therein is the dilemma. This very information has
become as debilitating as Achilles' heel because of its sheer
volume and the need for the human brain to process all this
information while supporting personal goals and preferences.

Two other significant communities have been gathering
momentum. One community realized that humans needed
assistance from agents that competed and collaborated to meet
desired goals (including, but not limited to, economic goals).
Another community realized that we needed a precise way to
capture essential knowledge, search it, share it and grow it via
collaborative techniques such that it could be actionable by
machines. Enterprises have typically used highly structured
databases for such actionable knowledge but such technologies
house only a very small fraction of the knowledge on the web and
are mostly proprietary. They are information silos. Web 3.0’s
vision for the Semantic Web Community combines what we know
works well on the world-wide-web with semantic technologies
like RDF to capture precise relationships, RDF triple stores to
persist them, SPARQL to query them, OWL (Web Ontology
Language) to develop ontologies, XML to serialize knowledge,
HTTP and other RESTful technologies [20] to communicate
between systems, and syndication protocols (Atom, APP and
RSS) to notify and deliver content. We believe that the Agent
Community and the Semantic Community together offer a great
platform for realizing and delivering the vision of Advocate
Agents depicted in our technical architecture (see Figure 2).

4.2 The Browser is the Platform
We argued that the browser should be leveraged and that it is not
just a window to the document web but a full-fledged platform.
Recent developments offer hard testimony attesting to this
proposition. Firefox, the world's second most popular browser, is
free and open source. Its excellent extension architecture supports
literally hundreds of available extensions. Since most personal
interaction with the web happens through the browser, Advocate
Agents stand to gain a tremendous insight into their master's
behavior if they could operate as a browser extension. Such a
extension would support several of the significant characteristics
of Advocate Agents - the ability to observe, and non-invasive
interaction/recommendation. AdaptiveBlue5 is one relevant
example of a Firefox extension.

4.3 REST - A Matter of Style
Representational State Transfer (REST) is an architectural style
that is currently in use in the "human" web. While detailed
discussions of the merits and constraints of REST are beyond the
scope of this paper, RESTful applications are simpler, more
scalable and can have a very small footprint - an ideal style for
our vision of Advocate Agents where the multiplicity of such
Advocate Agents can range from a single entity to an ultra-large-
scale system (ULS). Since architectures based on REST tend to
focus on Resources (a web page, an XML or RDF document,
image etc.), they are termed Resource Oriented Architectures
(ROA) or ROC (Resource Oriented Computing). We believe that
the REST architectural style possesses the necessary properties to
realize the business architecture of Agents. To support this, we
cite the example of modern e-commerce web-services like
Amazon.com's various API's, Google's GData and Flickr, as well
as modern exchange protocols like the Atom Publishing Protocol
which embrace REST styles. 1060 Research's NetKernel6 is an
excellent example of an advanced deep-REST engine used to

5 http://www.adaptiveblue.com/
6 http://1060.org/

6

http://openid.net/
http://www.adaptiveblue.com/

Figure 2: Technical Architecture for Advocate Agents

build scalable, high performance applications. Several of the
authors have successfully deployed complex systems based on
REST interfaces

4.4 Agent Framework
Although the browser is an excellent platform for an Advocate
Agent to leverage the web interactions of its master, a separate
small-footprint framework will be utilized to tap into other types
of interactions that its master might have with the environment.
These include E-mail, instant messaging and other mobile or
desktop applications that provide additional contextual
information for the Advocate Agent to be successful in achieving
its goals. Such a framework will minimally have the modules we
describe in the business architecture above. JADE [21] is one
popular agent framework that can be utilized to construct
Advocate Agents. Frameworks that embrace non-proprietary web
standards will be prevalent and preferred. Utilizing open
standards, agent framework implementations can proliferate,
encouraging competition and collaboration which will work in
favor of the Consumer - the human master.

4.5 Semantic Service Bus Architecture
We propose using a variation of an Enterprise Service Bus (ESB)7
[22] architecture for integrating a family of Advocate Agent
services. In general, an enterprise service bus is a collection of
services that can be used by any application within an enterprise,
independent of computer language or operating system. The key
difference between a standard ESB architecture and the one we
propose is the use of a library of business-rule-driven transforms
that map (and potentially convert) generic RDF triples into RDF
statements that conform to Advocate Agent semantics. The ESB
will provide several adapters for fitting a new module into the
ESB. The ESB will allow different modules to communicate by

7 For example see Mule: An Open Source Enterprise Service Bus
at http://mule.mulesource.org/

configuring incoming and outgoing endpoints to enable
information and knowledge to flow. Simple and complex
pipelines can be thus created with each processing stage
generating a semantic event. All these events can then be
harvested for further utility as we describe further in our paper.

4.6 Pipelines in Event Driven Architectures
Content and metadata needs to be transformed in numerous ways
before it can be captured as knowledge. Pipelining and deliberate,
complete decoupling of message routing between component
endpoints is a powerful and very flexible way to construct
complex systems. As pipelining manifested itself in many ways
over time in computing, it became clear that it is beneficial to
trade off slight inefficiency in message handling for effectively
infinite flexibility. As hardware and software resources become
cheaper and human resources more expensive, the ability to
quickly rearrange components in ways that are impossible to
predict is very essential.

Pipeline architectures define processing components as a linear
sequence of operations. The order and structure of these pipelines
can be easily configured using declarative rules. Some ubiquitous
examples of pipeline architectures are Unix pipes, functional
languages, and the HTTP servers that make-up the modern web.
Other examples include RSS/Atom mashups and XML pipelines
such as those specified by the W3C XProc standard8.

Event-driven-architectures (EDA) view every transformation or
computation as an event that might be subscribed to, routed,
vetoed, audited, inspected or in other ways processed before being
dispatched to any other component (however small or large). This
approach amplifies the flexibility and reliability of such pipeline
architectures due to inherent decoupling. SEDA (Staged Event

8 For example set XProc: An XML Pipeline Language W3C

Working Draft 29 November 2007 at
http://www.w3.org/TR/xproc

7

http://mule.mulesource.org/

Driven Architecture), an example of such an architecture, has
been beneficially utilized in the past (e.g., Mule ESB). Complex
Event Processing (CEP) engines exist to maximize and leverage
information event storms (instead of getting drowned by them).
Since Advocate Agents are primarily infomediaries [23, 24] and
will process vast amount of knowledge with specialized modules
and complex routing, we feel that Pipelines and EDA should be
seriously considered for application to such systems.

4.7 XML Exchange and Integration
Despite inherent verbosity, markup languages have been hugely
successful because they are both human-readable yet easily
parseable by machines. XML (Extensible Markup Language) has
become far more than just a way of delimiting comma or tab
separated files. XML has become an entire ecosystem of
declarative languages and tools to process them. XML Schema
are commonly used to efficiently validate form and structure.
XML is now the most common way to express domain specific
languages (DSLs). The new standard for HTML, XHTML, is a
DSL expressed in XML. Because of this, any XML processor can
process XHTML (or for that matter produce or consume it). XML
documents are ubiquitous. They pass to and from the web pages
as they are used in AJAX applications. They are the primary
serialization mechanism for web services, be it SOAP, XML-
RPC or REST. Most electronic data interchange formats are XML
based. XML has become so ubiquitous that we don't even notice
it. For Advocate Agents to fully realize their power, their
architectures need to embrace XML comprehensively - a distinct
trend being seen in the enterprise world.
Advocate Agents will need to communicate process and store
XML natively. The tooling for XML has matured significantly to
reduce the overhead of XML plumbing. Web service consumers
and producers are pre-built and available in every modern
language. Standards like XPath9 allow sophisticated, complex
queries on XML documents. XForms10 is a standard that allows
complex forms to be built using a declarative style. The symmetry
of XSLT, a full-featured declarative language for processing
XML, allows pipelines to be built easily. XQuery11, a recent
standard, allows XML mashups to be constructed very quickly12.
High performance, native XML databases like the popular, open
source, native XML database eXist13, and most major commercial
databases, virtually eliminate the overhead of converting
(shredding) XML to relational structures. XML IDEs like Stylus
Studio, Oxygen and XMLSpy make short work of XML
development, further reducing the learning curve required to
effectively apply XML. From many architectural viewpoints
(functional, development, operations), XML adoption to support
Advocate Agents is highly recommended.

9 http://www.w3.org/TR/xpath
10 XForms Specification, http://www.w3/TR/XForms
11 XQuery Specification, http://www.w3.org/TR/xquery
12 For an excellent example of using XQuery to mashup data see:

http://en.wikibooks.org/wiki/XQuery
13 http://www.exist-db.org/

4.8 Knowledge Processing and Information
Retrieval
These paragraphs describe detailed workings of the Knowledge
Representation and Inference Engine module in our technical
architecture (Figure 2).

4.8.1 RDF Harvesting
Many researchers doing work on intelligent semantic web agents
see their projects fall into several phases:

1. Gather - Gather assertion data from various sources
using a variety of formats such as RDF statements,
microformats, and RDFa

2. Convert - Convert data to a useable format such as
RDF and store it in triple stores

3. Analyze - Analysis of this data to see if it is relevant to
the objectives

4. Recommend – Modify product ranking and potentially
create recommendations and notifications for their
master

The first step depends on web page authors representing their data
in some machine readable format such as microformats embedded
in XHTML pages. Unfortunately, early web browsers were very
forgiving in their ability to correctly use HTML that was not well-
formed. As a result it became highly problematic to harvest
machine-readable facts from many web pages. With the growth of
standards such as XHTML and machine readable formats like
microformats, and RDFa, it is becoming feasible to harvest
content into RDF assertions and store the assertions into triple
stores. Inference engines work on these triple stores to satisfy
queries (SPARQL).

4.8.2 Microformats and RDFa
Several new technologies, such Microformats, allow intelligent
agents to harvest facts or assertions on the web. Microformats are
small additions to XHTML pages that make content semantically
precise and machine readable. Microformats take advantage of
the fact that all HTML tags have a class attribute that can be used
to add semantic information to an HTML file without disrupting
its display to a human viewer.

4.8.3 Business Rules
We propose a series of rule-based transformations that can harvest
RDF resources and transform or link them to standards that are
registered by one or more metadata repositories used by the
semantic integration bus. These metadata repositories are similar
to OWL14 files that are currently being used by the semantic web
community. The difference is that these repositories contain more
information than is currently encoded in the OWL standard. This
includes traceability data such as what person or agent added a
data definition to the metadata registry and when these events
occurred. This information, typically stored in an ISO/IEC 11179
metadata registry15, can be quickly transformed to create
validation schemas and user interfaces such as XForms.

14 OWL Specification , http://www.W3.org/TR/OWL
15 ISO/IEC 11179 Metadata Registry, http://metadata-

standards.org/11179/

8

4.8.4 Knowledge of User Preferences
User preferences will be stored as triples, e.g. the following
statements might be stored in a user preference triple store:
[Wolf] [prefers Rating above][3]
[Wolf] [prefers Vendor][Amazon]

4.8.5 Knowledge of User Needs
An Advocate Agent learns of its master’s needs via observations
or direct questions. For example, after a user does several
searches for computer hard drives, an agent might store the
following assertion in its objectives triple store:
[Wolf] [needs Product] [Hard drive]

4.8.6 Knowledge of Available Products
The agent must combine knowledge of the user and user needs
with data about where these products might be purchased, and
about how keywords related to user needs also relate to product
taxonomies. The following is a sample list of these assertions:

[Amazon] [has product] [Samsung Solid State Drive]

[Best Buy] [has product] [Samsung Solid State Drive]

[Samsung Solid State Drive] [has Rating above] [4]

[Samsung Solid State Drive] [is an instance of the class of
products] [hard drive]

4.8.7 Deriving New Knowledge
Merging of RDF graphs produces new knowledge. Inference
engines do the merging, given SPARQL queries. Advocate
Agents generate new queries depending upon user preferences,
observations and activities. As new product knowledge (e.g. solid
state drive) comes up, new product matches might be discovered
that the Advocate Agent non-intrusively suggests to its master. In
this case, a (SPARQL) query for a hard drive that matches Wolf’s
preferences should return a series of products in ranked list
similar to the way search engines return web search results in a
page-rank order. The Samsung Solid State Drive would be listed
in this product ranking and an [Explain] link near the product
would allow the user to see in plain language why that product
was ranked at a specific level.

4.8.8 Knowledge and Inference Architecture
The overall architecture for knowledge representation and
inference engine is depicted in Figure 3.

Figure 3: Knowledge representation and inference engine
architecture.

Figure 3 shows the following interactions:

1. A user creates one or more objectives and saves the
objectives in the Agent Objectives database.

2. The Inference Engine takes these objectives and uses
this data to search its RDF triple store and construct
new queries. It passes these queries to the New Query
Generator which converts it to HTTP Get queries on
the Internet, to look for possible product information,
recommendations and other metadata.

3. These HTTP Get requests return well-formed XHTML
Web Pages that are run through an RDF Extraction
and harvesting process.

4. The RDF extraction process is governed by a Rule
Engine that determines what RDF statements will be
added to the RDF triple store.

5. The executed rules are stored in a Rule Repository that
is consistent with the semantic bus discussed
previously.

6. Changes to the RDF triple store may trigger new
queries or may change the Product Rankings of
products.

7. Users may change the rules at any time using a Rules
Management Console. This is a set of Rule
Templates generated by the Advocate Agent system.

These processes continue within the constraints defined by the
user, such as network bandwidth limitations, CPU limitations or
search fee budgets. The user is notified when product ranking
goals have been achieved or resource limits have been reached.

4.8.9 Making Rules Visible
The current trend is to move away from hard-coded rules in
procedural languages toward declarative rule-based systems.
These systems store business rules in registries that can be created
and updated by the user community. Users can view and change
business rules via the economic dashboard. In addition users can
ask questions such as "Why did you make this decision?" We
propose storing rules for extracting data from other systems in a
rules repository that is tightly coupled with the metadata registry.
Rules can then be expressed in terms of a series of
condition/action statements, as selection lists that reference values
in the metadata registry. Advocate Agents must be able to
perform independent research on their own without specific
guidance from the user. They may begin with a small query and
use the results to gain additional facts. These repetitively enriched
facts are then used to gain additional information and make
appropriate inferences until goals are achieved. One key
difference between this and the way in which current web
crawlers work is that Advocate agents autonomously make fact-
grounded assertions and use them to reach specific, human-
personalized objectives.

4.8.10 Leveraging Agent Societies
With the highly collaborative, standards-based architecture that
we propose, we envision that cooperative agents will naturally
gravitate towards communities not unlike human social networks.
Each agent group’s members will have a symbiotic relationship
among themselves with respect to helping each other out.

9

5. Conclusions and Future Work
This paper presents an architecture for Advocate Agents -
preference-based, user-centric, learning, infomediary agents that
facilitate human decision making. The facilitation is supported by
various machine learning, data mining, recommendation, and
business intelligence techniques, as well as cutting edge
architectures and technologies such as Enterprise Service Bus,
Inference Engines, Processing Resource Clouds (e.g., Hadoop),
RDF, RDFa, Microformats, SPARQL, Rule-based systems, XML
Pipelines, XForms, XQuery, XPath, and XML. The main
contribution of this paper lies in demonstrating feasibility of
Advocate Agents by presenting an architecture that integrates all
these technologies into a unique system and demonstrating that all
the components of Advocate Agents can be built from already
existing methods and elements.
We are currently working on a prototype of our architecture. In
the next step we’ll bootstrap preference models with initial
customer profiles obtained through a questionnaire and
collaborative filtering [25]. Afterwards we plan on observing
individual users through a longitudinal study with many
participants. The agent will record all relevant user actions. After
gathering this observation data, we plan to reverse engineer the
human user objective. With the help of data mining we are
planning to design rules based on how good the human decision
fits the underlying data. Then the agent will attempt to optimize
the decision space and come up with a possible new
recommendation for a user. Since the feature space of the
environment’s specific domain might be quite high, we plan on
applying a method such as Principal Component Analyzes (PCA)
to reduce the dimensionality of the space, so that a following
optimization is faster and produces more intuitive results for the
user. A critical question we must answer is: “Is an agent capable
of optimizing individual real life human decisions?” In
connection to this, we would like to determine whether the human
decision maker prefers an agent’s choice to his own or not. This
means we must validate the goodness of recommendations
suggested by the agent. Our first prototype is in collaboration with
Dutch Flower Auctions – an Advocate Agent for a flower
wholesaler. Current efforts involve researching this specific
feature space and the connected preference space of individual
flower traders in detail.

6. References
1. Simon, H.A., Rational Decision Making in Business

Organizations. The American Economic Review, 1979.
69(4): p. 493-513.

2. Gigerenzer, G. and P.M. Todd, Simple Heuristics That
Make Us Smart. 1999: Oxford University Press.

3. Maes, P., Agents that reduce work and information
overload. Communications of the ACM, 1994b. 37(7):
p. 30-40.

4. Kumar, R., et al., Recommendation Systems: A
Probabilistic Analysis. JCSS, 2001. 63(1): p. 42-61.

5. Schafer, J.B., J.A. Konstan, and J. Riedl, E-Commerce
Recommendation Applications. Data Mining and
Knowledge Discovery, 2001. 5(1): p. 115-153.

6. Varian, H.R. and P. Resnick, CACM Special Issue on
Recommender Systems. Communications of the ACM,
1997. 40.

7. Adomavicius, G. and A. Tuzhilin, Toward the Next
Generation of Recommender Systems: A Survey of the
State-of-the-Art and Possible Extensions. 2005.

8. Xiao, B. and I. Benbasat, Consumer Decision Support
Systems for E-Commerce: Design and Adoption of
Product Recommendation Agents. MIS Quarterly, 2007.
31(1): p. 317-209.

9. Adomavicius, G. and A. Tuzhilin, An Architecture of e-
Butler: A Consumer-centric Online Personalization
System. International Journal of Computational
Intelligence and Applications, 2002. 2(3): p. 1-15.

10. Wellman, M.P., E.H. Durfee, and W.P. Birmigham, The
digital library as a community of information agents.
Expert, IEEE [see also IEEE Intelligent Systems and
Their Applications], 1996. 11(3).

11. Shneiderman, B., Direct manipulation: A step beyond
programming languages. 1981.

12. Maes, P., Social interface agents: Acquiring
competence by learning from users and other agents.
Software Agents—Papers from the 1994 Spring
Symposium, Technical Report SS-94-03, Etzioni, O.,
Ed, 1994a: p. 71-78.

13. Rhodes, B.J. and P. Maes, Just-in-time information
retrieval agents. IBM Systems Journal, 2000. 39(3&4):
p. 685-.

14. Berners-Lee, T., J. Hendler, and O. Lassila, The
Semantic Web. Scientific American Magazine 2001.

15. Haeubl, G. and V. Trifts, Consumer Decision Making in
Online Shopping Environments: The Effects of
Interactive Decision Aids. Marketing Science, 2000.
19(1): p. 4-21.

16. Jeffrey, D. and G. Sanjay, MapReduce: simplified data
processing on large clusters. Commun. ACM, 2008.
51(1): p. 107-113.

17. Witten, I.H. and E. Frank, Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. 2000: Morgan Kaufmann.

18. Segaran, T., Programming Collective Intelligence:
Building Smart Web 2.0 Applications. 2007: O'Reilly
Media, Inc.

19. Anderson, C., The Long Tail: Why the Future of
Business is Selling Less of More. 2006: Hyperion.

20. Richardson, L., S. Ruby, and D.H. Hansson, RESTful
Web Services. 2007: O'Reilly Media, Inc.

21. Bellifemine, F., A. Poggi, and G. Rimassa, Developing
Multi-agent Systems with JADE. Intelligent Agents VII:
Agent Theories Architectures and Languages: 7th
International Workshop, ATAL 2000, Boston, MA,
USA, July 7-9, 2000: Proceedings, 2001.

22. Chappell, D., Enterprise Service Bus. 2004: O'Reilly
Media, Inc.

23. Varun, G. and T.C.T. James, E-commerce and the
information market. Commun. ACM, 2001. 44(4): p.
79-86.

24. Hagel, J. and M. Singer, Net worth. 1999: Harvard
Business School Press Boston.

25. Billsus, D. and M.J. Pazzani, Learning collaborative
information filters. Proceedings of the Fifteenth
International Conference on Machine Learning. 1998.
46-54.

10

	1. Introduction
	2. Related Work
	3. Advocate Agent Business Architecture
	3.1 Architecture Module Descriptions
	3.1.1 Observation Module
	3.1.2 Information Retrieval Module
	3.1.3 Knowledge Representation and Inference Module
	3.1.4 Agent Collaboration Module
	3.1.5 Recommendation Module
	3.1.6 Notification Module
	3.1.7 High Performance Processing Module
	3.1.8 Security
	3.1.9 Economic dashboards

	3.2 Infrastructure
	3.2.1 Communications
	3.2.2 Standards Infrastructure
	3.2.3 Maintaining Transformation Rules
	3.2.4 Computing Infrastructure

	3.3 Agent Communities and Cloud Support
	3.3.1 Collective Intelligence
	3.3.2 Agent Metadata Usage
	3.3.2.1 Web Crawling for Gathering
	3.3.2.2 Resource Description Framework for Representation

	3.4 Security and Privacy
	3.4.1 Social Trust and Verification
	3.4.2 Private and Public Firewalls
	3.4.3 Behavioral Inferences
	3.4.4 Central Authorities and Open Identifications

	4. Advocate Agent Technical Architecture
	4.1 Trends
	4.2 The Browser is the Platform
	4.3 REST - A Matter of Style
	4.4 Agent Framework
	4.5 Semantic Service Bus Architecture
	4.6 Pipelines in Event Driven Architectures
	4.7 XML Exchange and Integration
	4.8 Knowledge Processing and Information Retrieval
	4.8.1 RDF Harvesting
	4.8.2 Microformats and RDFa
	4.8.3 Business Rules
	4.8.4 Knowledge of User Preferences
	4.8.5 Knowledge of User Needs
	4.8.6 Knowledge of Available Products
	4.8.7 Deriving New Knowledge
	4.8.8 Knowledge and Inference Architecture
	4.8.9 Making Rules Visible
	4.8.10 Leveraging Agent Societies

	5. Conclusions and Future Work
	6. References

