A Beginners Guide XRX

A step-by-step guide to creating your first
XRX application with eXist. Version 4.

Dan McCreary <dan@ynt acti ca. conp
Joe Wicentowski <j oew z@nai | . conp

A Beginners Guide XRX: A step-by-step guide to creating your first

XRX application with eXist. Version 4.
by Dan McCreary and Joe Wicentowski
Copyright © 2010 Dan McCreary

Licensed under the GNU Lesser Genera Public License (LGPL)

Table of Contents

L. GELING SEAEA ... ettt et e et ettt 1
INEFOTUCTION ...ttt e e et e e e e e e e eaans 1
INtENdEd AUdIENCE ...t 1
GELEING SEAMEH ...eeeeeeeit ettt e e et e e et e e e e aaee 1
Terms and ConCEPES USEAuiiiiiii it 2
Collection and File CONVENIONScoouiiiiiiiiiie e 3
Example Datal BUSINESS TEIMMSoouuuiiiiiiieeeeii e ettt e et et e e e e e e 4
N HBIVS ettt ettt e et e e eaaas 4
LiStNG TTOIMS ...t ettt e e e e e et e eeeee 4
Viewing an Individual TTemM 6
SEAICIING TTEIMS ..ot e e e et e e et eeeebe e eees 7
Search Configuration Fileooieiiiiii e 7
REINAEXING ...ttt et e enaas 8

The SEArCH FOMM ..ee e 9

The SEACH SEIVICE ...t 9
SEAMCH RESUILS ...t 10
EITiNG . .eeeeeee e 11
MOdel-VIieW-Binadingoooiiiiiiiiii e 11

ThEe Eit QUENY ...ttt et e e s 11
SAVING NEW TTEIMIS ...t 14
Updating EXISting TEIMSuuiiiii e e 15
DEIEIING ..ttt 16

THE DEEIE SCIIPL ... ettt 17

The Application HOME PaJEcooviiiiiei e 18
NEXE SEEDS ..ottt ettt 19
REFEIENCES ...t e 21

List of Figures

1.1, OUPUL FrOM I T ST =T T @IMB. X wevniiiiiiieeeei et e e 5
1.2. OULPUL TrOM Vi @WF T T EIM X ceiitiieiiiii ettt e e e e 7
1.3. Results of runninNg I €1 NOEX. X «.uueveruinieieiiieeeiii ettt e e et r e e et eeeaes 8
1.4. Blank search SCreen fOrm ... oo 9
1.5, SEAMCH TESUILS ...ttt ettt e et e e ettt e e e et e e e na e een 10
1.6. Model VIEW BiNAING ...coovuiiiiiiieiiei et 11
1.7.0utput of i NAeX. NT M oo e 19

List of Examples

1.1, SAMPIE SEFUCIUIE ...ttt ettt ettt e et e e e ena s 4
1.2./db/ apps/terns/ vi ews/ I i St-itenmB. X «cooveriiriiiiiiiiieie e 5
1.3. /db/appS/termMS/VIEWS/VIEBW-ITEIMLXT .. coeeveeeeei et 6
1.4./ db/ syst em confi g/ db/ apps/term data/col | ection.xconf 7
15./db/ apps/terns/ adni N/ rei NAEX. XO .oveeeeeieiiiiieeei e 8
1.6./db/ apps/terns/ search/ search-formhtm ... 9
1.7./ db/ apps/terns/ search/ searCh. Xqcccoooviiiiiiiiiii e 10
1.8./db/apps/terns/ edi t/ edi t. XO .. 12
1.9. XSLTFOrms processing iNSIIUCLIONueieuueneieeiie et e et e et e e e e e eeenes 14
1.10./ db/ apps/terms/ edit/next-id. Xm ... 14
1.11. / db/ apps/terns/ edi t/ SAVE- NEW. X ..eeeeruuiiieiineeeiiiie e eeei e e e 15
1.12. /db/apps/terns/ edit/ updat €. X ..cccueieiiiiiiiiiiiieee e 16
1.13./db/ apps/terns/edit/del ete-confi rM XQ ..cccoooeeeiiiiiiiiiiiiiiiiiie e 17
1.14. /db/apps/terns/edit/del el . X ..oooiieiiiiiieiei e 18
1.15. /db/apps/terms/index. htm .. 19

Chapter 1. Getting Started

Introduction

Thefollowing isaisaBeginner's Guide for creating a new XRX application in the eXist application
server. Beginners Guides are intended for people that are new to eXist and are interested in building
their first web applications. ThisBeginners Guide demonstrates the minimal code necessary to perform
CRUDS operations. These are operations are Create, Read (or view), Update, Delete and Search.
Creating your first XRX application can be somewhat tricky sincethere are several structuresthat need
to be "wired" together correctly for the CRUDS components to work correctly. This example tries
to use as little code as possible and yet still cover many of the key components of a fully functional
XRX web application.

Intended Audience

Creating anew web application from scratch isacore skill that is necessary to understand the power of
the XRX web application architecture. Our experience has shown that once users get an understanding
of how XRX applications are constructed they can quickly become productive building new web
applications. They also have amuch better understand of the complex portions of the XRX application
and why these portions are usually automated in XRX frameworks.

This document is designed for new eXist users that would like to create their first XRX application.
For this process we assume that you have abasic understanding of XML and understand concepts such
as XML elements and X Path expressions. The user should also be somewhat familiar with very basic
HTML markup including the structure of an XHTML file and use of HTML lists and HTML tables.
We will also be describing how XQuery is used to create listing of items and viewing an individual
item. Users should review the basic structure of a FLOWR expression (for, let, order, where return)
and basic XQuery syntax. Familiarity with the fundamentals of XFormsis helpful but this guide will
explain each of the XForms elements used in the example.

We should note that there are several easy-to-use drag-and-drop GUI tools available that can create
XForms and there are systems that can also automatically create a fully functional XRX application
directly from an XML Schema. But using these tools and frameworks hide much of theinner workings
of building an XRX application. So this tutorial is for those that want to have a clear understanding
of how XRX systems work.

Getting Started

To use this guide you will need to have following toolsin place:

1. eXist: You will need to have aversion of eXist running on your local system. By default eXist
runs on port 8080 so that when you set your web browser to http://localhost:8080 you should see
the eXist homepage come up. Y ou can also run this tutorial on any remote server. If you are doing
this you must replace the word localhost with the name of your remote server. Make sure that you
take into account the port number. The might not be 8080 and it may be missing which means that
port 80 isimplied.

2. Editor: You will need some tool to edit XML and XQuery files. We strongly encourage you
to use atool such asthe oXygen XML Editor since thistool has special additions to make editing
XML and XQuery files easy. Simpletext editors such as Microsoft Notepad will work but will not
give you immediate feedback when there are syntax errorsin your files. Syntax highlighting isvery
useful when you are first learning an new programming system. Since there are 30-day freetrials
of many tools we strongly encourage new users to use good XML editors.

3. Uploader: You will need some tool to transfer your files directly to eXist. Tools like 0Xygen
can savedirectly to the eXist database or you can also useaWebDAYV client to copy thefiles. There
are also web uploader tools in the eXist admin area and there are custom versions that also allow

Getting Started

you to upload and expand an entire ZI P file within the database. As afinal option you can also use
the eXist Java console to upload files.

4. XForms: You will need some XForms client libraries. This example will use the XSLTForms
client which is usually installed in /db/xforms/xsitforms. Y ou do not have to use libraries that are
in the eXist database but this is sometimes preferable.

Terms and Concepts Used

This example will use the following terms and concepts:

XRX: XRX isthe name of the web application architecture that we will be using in this example.
XForms are used in the client (web browser), REST is the style of interfaces to the database and
XQuery is the server language. The most significant portion of XRX is that it does not require the
usersto translate datainto Javaor .Net objectsand it will never requirethat the user "shred" documents
into rows of arelational database.

XForms: aset of around 25 XML tagsthat are used to define the structure of aweb from. XForms

is much more advanced then traditional HTML formsbut requiresfirst time user to bind user interface
controls to each leaf element in an XML instance. XForms stores the datain a model element in the
HTML HEAD tag and then binds the leaf elementsin the model to web input controls. Most simple
forms need only a few control types and these can be quickly learned.

XQuery: the query language for selecting XML structures from the XML database. XQuery is a
little different then other languages you may have used in the past. It is a "functional" programming
language that makes it very easy to create robust server-side programs that do not have many of the
"side-effects’ of other languages. It is similar to the SQL language in some ways but it is specifically
designed for selecting and transforming XML documents. Because of the indexing structure of eXist
it isalso very fast, even when working with gigabytes of XML data.

Note for New XQuery Users

There are somethingsthat are very different in X Query that you should be aware of . In general,
all XQuery variables are immutable, meaning that they are designed to be set once but never
changed. So functions like let $x := $x + 1 within loops will not increment like in procedural
languages. There are also restrictions on what can be doneinside FLOWR statements. We will
illustrate these in examples later in other Beginner's Guides.

REST: the term we use to describe that many of the parameters to our XRX application will be
done by simply placing parameters at the end of a URL. For exampleto pass aquery keyword to aour
XRX application search service the URL appends search.xq?g=myword. This means you just need a
web browser to test services. No complex SOAP interface testing tools are required. To execute any
XQuery program that is running in the eXist database you simply enter the URL to that function in
the web browser. For example the home page of the test application under the default configuration
will be http://local host:8080/exist/r est/db/apps/term/index.html. Note that the word "rest" comes after
the /exist/ and before the /db/.

WebDAYV: the term we use to describe how bulk files are moved to and from eXist and how files
are listed within eXist collections. If you want to add a folder to eXist you can do this through the
WebDAYV interface. When you use oXygen or other editors you will also usethe WebDAYV interface.
To open afile through the WebDAYV interface you might open http://localhost:8080/exist/\WebDAV/
db/apps/term/.

Model-View-Bindings: the term we use to describe how user interface elements (controls) within

a form are associated with leaf-level elements within the XForms model. This is similar to the
Model-View-Controller (MVC) architecture in other systems but in the case of XForms is that event
controls are part of the views. By using XPath statements in the ref attributes for user interface
controls adependency graph is constructed that keeps the model and viewsin sync. This makesforms
development much easier since the form devel oper never needs to manually move data between the
model and the views.

http://localhost:8080/exist/rest/db/apps/term/index.html
http://localhost:8080/exist/WebDAV/db/apps/term/
http://localhost:8080/exist/WebDAV/db/apps/term/

Getting Started

Convention over Configuration: the process of using standardized collection and file names
for frameworks to be automated across all XRX applications. Users have the ability to change these
conventions but they are then responsible for maintaining their own frameworks. The reason for using
agenericfilenamesuchasl i st-itens. xqinsteadof | i st -t er ns. xq may not be clear toyou
at first, but as you will see later, this more genera file naming convention has it merits when many
applications are managed.

Collection and File Conventions

When we build an XRX application it is important to create a set of collections that will help us
structure and our application. Although you do not have to use the collection conventions used in this
example, you will find that many frameworks that use this "convention" will be much easier to build
and maintain. The philosophy of convention over configuration is implicit in this design. You are
always free to change the names of the collection or the queries but you must take full responsibility
of building your own frameworks if you vary from these conventions.

Here are the standards we strongly recommend you use for your first application:

1. Apps: All XRX applications should be grouped in asingle collection. For example/ db/ apps
or / db/ or g/ myconpany/ apps. The exact location of the apps collection in the databases in
not relevant but all apps should be stored together in a collection called apps.

2. App: Each XRX application should be grouped in a collection. This collection name should
reflect the function of the application. For example our business term manager might be / db/
apps/ t er ms. The convention is to use the plural (terms not term) if the application manages
multiple business terms.

3. Data: Each XRX application should store its data in a separate data collection. For example our
term manager application will store al the data in /db/apps/terms/data. In this example the first
term will be stored in the file 1. xm and the second in the file 2. xm etc. When the user saves
new terms we can increment a counter to add a new term.

4. Views: Each XRX application should store read-only views of the datain aviews collection. In
our example our term manager will store read-only views of the datain the/ db/ t er ml apps/
t er ms/ vi ews. Notethat views are read-only and functionsthat do not alter the XML data. Tools
that change or edit the dataare not usually stored in the views collection. Thisallows access control
system to limit who change or delete data.

5. Edit: Each XRX application should store its edit function in a collection called edit. For our
term manager application thiswould be /db/apps/term/edit. Edit function include saving new terms,
updating terms and deleting terms. By grouping all edit functionstogether it is easy to deny access
to users that do not have permission to change items.

6. Search: Each XRX application should storeits search functionsin acollection called sear ch.
For our term manager application this would be /db/apps/term/search. There are two functions
stored here. A simple HTML search form (search.html) and a RESTFul search servicexg.
Advanced applications sometimes combined these functions into a single XQuery that generates
HTML. In addition to these two search function an additional configuration file must be stored
in the /db/system/config/db/apps/terms/data collection that describes how the files are indexed for
search.

7. Applnfo: Each XRX application should store information that pertains to the application in an
XML file within the main application collection. By convention thisfileis called the app-info.xml
file. Information such as the application name, description, author, version, license, dependencies
etc. should be stored in thisfile. Thistutorial will not cover thisfile structure but you may seeitin
many of the sample programs. Thiswill be covered in other XRX Beginners Guides.

Getting Started

Example Data: Business Terms

In this example we will use a simple registry of business terms that might be used in a glossary of
terms on aweb site. Each term will have aterm name, a definition and a publish-status code of draft,
under-review or published.

Example 1.1, “Sample Structure” is a sample structure of the XML file for a sample term:

Example 1.1. Sample Structure

<ternmp
<id>1</id>
<t er m nane>Decl arati ve Progranm ng</term nane>
<definition>A style of programm ng that allows users to declare their

want done) and | eave out the details of how the function should be perf

<publ i sh- st at us- code>publ i shed</ publ i sh- st at us- code>
</ternmp

In this example we have selected data items that will use asimple input field for the name, atextarea
for the definition and a selection list for the status codes.

Views

There are two XQuery serviceswe will createin our initial XRX application. Oneisasimple XQuery
that will list all the terms in our data collection that have the root element t er m Thisfileis called
list-itens.xq. The second is an XQuery function that displays all of the elements individual
term in HTML format. We call this vi ew-i t em xq. The vi ewi t em xq XQuery requires a
single parameter which isthe ID of the term. These querieswill allow the user to drill down to see an
individual terms by first viewing alist of all the term in a collection.

Listing Items

Our first task will be to create a simple XQuery program that will list all the termsin our collection
inan HTML file. To do this we will us a ssimple XQuery FLOWR loop that gets each of there terms
in the collection in succession and then converts the XML into a HTML list item using the <l i >
tag. The convention to use in Example 1.2, “/ db/ apps/terns/vi ews/list-itens. xq" is
thefilenamel i st -itens. xq.

Getting Started

Example 1.2./ db/ apps/terms/ views/list-itens. xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";
<htm >
<head>
<title>d ossary of Terns</title>
</ head>
<body>
<h1>Ter ns</ hl>
{
for $termin collection('/db/apps/terns/data')/term
et $termnanme := $term term nanme/text()
order by $term nane
return
{$termnane}
}
</ body>
</htm >

Figure 1.1, “Output from | i st -i t ens. xq" shows the output:

Figure 1.1. Output from |l i st-itens. xq
Terms

Declarative Programming
Functional Programming
XForms
XForms-REST-XQuery (XRX)
XQuery

n e e b —

There are few items to note. First we that we use the collection function to specify what datais being
listed. We also return only itemsin the data collection that have term astheir root element. Thisallows
usto put other data types within the data collection without disrupting this report.

Our next step isto change each of theitemslisted into HTML links so that we can view each individual
item on a separate HTML page. To do this we change the <l i >{ $t er m nane} </ | i > to be the
following code:

{$termname}</1i>

This produces the following output:
Terms

Declarative Programminge
Functional Proeramming

XForms
XForms-REST-XQuerv (XRX

XQuery

L B o b —

Getting Started

This has the effect of taking the ID out of each term and passing it as a RESTful parameter to out next
query that will view each term. We will use this same technique many times. Note that this uses a
relative path to the view-item.xq program. So it is important to keep both the list items and the view
itemsin the same collection for this to work correctly.

Notethat thislist itemsworksfine aslong aswe have just afew hundred terms. But asyour collections
get longer (usually above a few hundred items) you will want to create a list items query that only
lists the first 30 or so items and then has a NEXT button to get more items. This will be covered in
another section. (see Pagination in XQuery)

Viewing an Individual Item

Now that we have alist of all the items in a collection we are ready to drill down to a specific item
and see all of the information about a single item. By convention this is done by an XQuery file call
"view-item.xq". The item viewer takes a single parameter that is the ID of theitem. It hasto perform
aquery on al the itemsin the data collection to find only the item you are looking for. Thisis done
by adding a "predicate" or "where clause" to the query. In general the predicate will be used because
it will be faster. The structure of the line that gets an individua item (for example term id=5 from a
collection is the following:

let $term:= collection('/db/apps/terns/data')/ternfid="5"]

Note that the predicate [id="57 indicates to the system that only a term with an ID of 5 should be
returned. Also note that we are doing simple string comparison and we are not converting the idsinto
integersin this example.

Our next step isto get the parameter from the URL to select the correct item. Thisis done by using
the function request:get-parameter(). We then display all the elements of the term using one element
per line. Example 1.3, “/db/appsterms/views/view-item.xq" shows what the source of the | i st -
i t em xq filelookslike

Example 1.3. /db/apps/ter ms/views/view-item.xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm nmedi a-type=text/htm indent=yes";

let $id := request:get-paraneter("id", "")
et $term:= collection('/db/apps/terns/data')/ternfid=$id]

return
<htm >
<head>
<title>Term {$termid/text()}</title>
</ head>
<body>
<h1>Term {$termid/text()}</hl>
Term I D {$termid/text()}

Term Nane: {$terniterm name/text()}

Term Definition: {$ternmdefinition/text()}

Term Status: {$term publish-status-code/text()}

</ body>
</htm >

This produces the output shown in Figure 1.2, “ Output from vi ew- i t em xq”:

Getting Started

Figure 1.2. Output from vi ew-i t em xq

Term 1

Term 1D:

1

Term Name: Declarative Programming
Term Definition: A style of programming that allows users
to declare their requirements (what they want done) and leave

out the det

ails of how the function should be performed.

Term Status: published

Searching Items

There are three items that we must create to create a searchable application. These are the HTML
search form, a search service and the configuration file for defining the indexes. In addition to these
three files we have also provide a script that runs areindex of the collection of terms.

Search Configuration File

Example 1.4, “/
search configurati
dat a.

Example
col |l ection

<col | ecti on
<i ndex>
<l--

<f ul

<l--
<l--

<cre

<l--

<l uc

</lu
</ i ndex>
</coll ection

db/ system confi g/ db/ apps/ternf data/ col | ection.xconf” is a
onfilethat isstored in the collection/ db/ syst eml confi g/ db/ apps/term

1.4. / db/ syst eml confi g/ db/ apps/t er m dat a/
. Xxconf

xm ns="http://exist-db.org/collection-config/1l.0">

Di sable the standard full text index -->
| text defaul t="none" attributes="no"/>

Range i ndex configuration on the id attribute -->
Most ids are integers but we will keep this general <create gnane=
ate gnane="id" type="xs:string"/>

Lucene index configuration -->

ene>
<l-- Use the standard analyzer will ignore stopwords like "the', 'a
<anal yzer cl ass="org. apache. | ucene. anal ysi s. st andar d. St andar dAnal yz

<l-- an index boost can be used to give matches in the

nane a hi gher score. This neans a nane match will have hi gher rank !
an match in the definition. -->

<text match="//term term nane" boost="2"/>

<text match="//term definition"/>

<text match="//ternf publish-status-code"/>

cene>

>

Getting Started

This configuration file creates an index for the term id for fast searching. It also creates a Lucene
fulltext index for al elementsin the term.

Reindexing

After you have created or modified your configuration file you must reindex any data that you have.
This can be done by pasting the following two lines into the XQuery sandbox:

Paste the following lines into the XQuery Sandbox to reindex the
col I ection:

(xm db: 1 ogin('/db/apps/terns/data', 'admin', 'myadm npassword'),
xm db: rei ndex(' / db/ apps/terns/data'))

If you are not familiar with the eXist sandbox you can also run the XQuery script in Example 1.5,
“/ db/ apps/ t er ns/ adm n/ r ei ndex. xq”, which will display the results shown in Figure 1.3,
“Results of running r ei ndex. xq”. It is stored under the admin collection. The script will login as
the administrator and then run the reindex function on the collection. It also returns the time it took to
reindex the collection. For collections that are under 1,000 medium sized 10K byte documentsthisis
usualy runsin afew seconds. Tools are available for larger collections to schedule indexing during
off hours with the eXist job scheduler.

Example 1.5./ db/ apps/ t er ns/ adm n/ r ei ndex. xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm medi a-type=text/htm indent=yes";

| et $data-collection :="'/db/apps/terns/data'
et $login := xmdb:1ogin($data-collection, 'admn', 'myadn npassword')
let $start-time := util:systemtinme()
[et $reindex := xm db: reindex($dat a-col | ecti on)
let $runtine-ns := ((util:systemtine() - $start-tine) div xs:dayTi neDuration('
return
<htm >

<head>

<title>Reindex</title>
</ head>
<body>

<h1>Rei ndex</ h1>
<p>The index for {$data-collection} has been update in {$runtine-ms} mlli-:
App Hone
</ body>
</htm >

Figure 1.3. Resultsof running r ei ndex. xq
Reindex

The index for /db/apps/terms/data has been update in 396 milli-seconds.

App Home

Getting Started

The Search Form

The search form isasimple HTML GET form with one text field input and one submit button. The
action of thisform (see Example 1.6, “/ db/ apps/ t er ns/ sear ch/ search-form ht ml ") will
use the value in the input field and send the field in the g parameter to the search service.

Example 1.6./ db/ apps/ t er ms/ sear ch/ sear ch-form ht m

<htm >
<head>
<title>Search Terns</title>
</ head>
<body>
<h2>Search Terms</ h2>
<f orm met hod="CGET" acti on="search. xq">
Sear ch: </ b>
<i nput nanme="q" type="text" val ue="" size="30"/>
<i nput type="submit" val ue="Search"/>
</ fornp
</ body>
</htm >

Figure 1.4, “Blank search screen form” is a screen image of a blank search screen form. To use the
search the user simply enters one or more keywords into the search form selects the search button
(or enter key).

Figure 1.4. Blank search screen form

Search Terms

Search: ("search

If you put akeyword in the input field the following URL will get generated:

/ db/ apps/ t erns/ sear ch/ sear ch. xq?g=nykeyword

The Search Service

The search service is an XQuery script that calls the Lucene fulltext search function.

Getting Started

Example 1.7./ db/ apps/ t er ms/ sear ch/ sear ch. xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";

| et $data-collection :="'/db/apps/terns/data'
let $gq := request:get-paraneter('q, "")

(: put the search results into nenory using the eXi st any keyword anpersand equ
l et $search-results := collection($data-collection)/tern{ft:query(*, $q)]
| et $count := count($search-results)

return
<htm >
<head>
<title>Term Search Results</title>
</ head>
<body>
<h3>Ter m Search Resul t s</ h3>
<p>Search results for: </ b>" {$g}" In Collection: </ b>{$
<p>Terns Found: {$count}</p>

{
for $termin $search-results
let $id := $termid
let $termnane := $term term nane/text ()
order by upper-case($term nane)
return

{ $t er m nanme} </ a>

}</ ol >

New Sear ch</ a>
App Hone
</ body>
</htnl >

Search Results

The form will then pass the search keywords to the search service. The search service will return a
series of search results with one line per hit. Each entry is aso alink to the item-viewer service (see
Figure 1.5, “ Search results”).

Figure 1.5. Search results

Term Search Results
Search results for:"programming" In Collection: /db/apps/terms/data
Terms Found: 2

1. Declarative Programming
2. Functional Programming

New Seach

10

Getting Started

Editing

Editing the itemsis the most complex portion of building an XRX application. Because of this many
advanced XRX frameworks attempt to automate this process by generating all of the required files

Model-View-Binding

To understand how the edi t . xq script works it is first important to understand how the XForms
standard uses Model-View-Binding to associate a user interface control with an XML instance inside
the model. Thisisillustrated in Figure 1.6, “Model View Binding”.

Figure 1.6. Model View Binding

Model

<term>
<id>1<fid>
term-name>Declarative Programming</term-name>
<definition>A style of programming that</definition>
<publish-statys-code>published</publish-status-code>

ID: 1

Term Name: pecipfitive Programming

Definition: style of programming that allows users to declare their requirements
(what they want don and leaves out the details of how the function should

be performed.

Status: [published [}/

In the form the XML datathat the form modifiesisloaded into an <xs: i nst ance> element within
the <xf : nodel >. Thisis specified using the sr ¢ attribute. Inside the body of the form each of the
user interface controls (an output, input, textarea and select1 control) each have ar ef attribute. This
attribute contains the X Path expression of the element it corresponds to within the model.

The Edit Query

The Edit query is the most complex file in this application. It must perform saves for new items as
well asupdate operations. The sourcecodein Example 1.8,/ db/ apps/ternms/edit/edit. xq"
should be studied carefully since many of the techniques used in theform will be used in more complex
forms.

11

/* align the | abels but not the save |abel */
xf | output xf|label, xf|input xf|label, xf|textarea xf|label, xf]|sel
di splay: inline-block
wi dt h: 13@-ting Started

text-align: right;
vertical -align: top;
Example 1.8./ db/ ampsi i-ei gs/:edek;/ edi t . xq
font-wei ght: bold;
}

xf|]input, xf|selectl, xf|textarea, xf|ouptut {
di spl ay: bl ock;
mar gi n: lex;
}
11>
</styl e>
<xf: nodel >
<xf:instance xm ns="" src="{$file}" id="save-data"/>
<xf:subm ssion id="save" method="post" action="{if ($new='true'
</ xf: model >
</ head>
<body>
<hl>Edit Ternx/ hl>

{if ($id)
then (
<xf:output ref="id" class="id">
<xf: | abel >I D: </ xf: | abel >
</ xf : out put >

) else ()}

<xf:input ref="termnane" class="term nang">
<xf: 1 abel >Ter m Nane: </ xf: | abel >
</ xf:input>

<xf:textarea ref="definition" class="definition">
<xf: | abel >Definition: </ xf:| abel >
</ xf:textarea>

<xf:selectl ref="publish-status-code">
<xf: | abel >St at us: </ xf: | abel >
<xf:itenp
<xf: |l abel >Dr af t </ xf : | abel >
<xf:val ue>draft </ xf: val ue>
</xf:itemp
<xf:itenp
<xf: | abel >Under Revi ew</ xf: | abel >
<xf:val ue>revi ew</ xf : val ue>
</xf:itemp
<xf:itenp
<xf: | abel >Publ i shed</ xf: | abel >
<xf:val ue>publ i shed</ xf : val ue>
</xf:itemp
</ xf:sel ect 1>

<xf:submt subm ssion="save">
<xf: | abel >Save</ xf: | abel >
</ xf:submt>
</ body>
</ htm >

let $xslt-pi := processing-instruction xm -stylesheet {'type="text/

return ($xslt-pi, $form

12

Getting Started

Oneitemto noteisthat thisform does"double duty" as both aform for new itemsaswell asaform for
updating existing items. The new=t r ue parameter must always be passed to the form when creating
anew item. Production systems check for these parameters and return error codes if one or the other
is not passed to the form.

All XForms store the data that is manipulated in the tag <xf : model >. This form uses a single
instance within the model to store the data that will saved when the users selects the "Save" button.
The save button in XFormsis called the <xf : submi t > element. It has a single attribute called the
submission attribute that is associated with an <xf : subni ssi on> element within the model. In our
example above the name of the submission element (itsid) is save. The save submission element
is responsible for sending the data from the XForms client to a specific service on the server. In the
example above there are two dlightly different XQuery services, one for saving new items and one for
updating existing items. We will be covering the save-new and the update queries|ater in thistutorial.

The query that isused iswrapped inside of the action attribute of the save submission. Hereisthat code:

action="{if ($new='true')
then ('save-new. xq')
el se ('update.xq)}"

You can see that if the user is creating a new item the datais sent viaan HTTP POST to the save-
new. xq script. If the user does not have anew item the POST datais sent to theupdat e. xq script.

Although we could have used a single save.xq script this structure allows you to trigger different
behavior for different functions you may want. For example the save-new.xq might also trigger an e-
mail notification when new records are saved for the first time. Versioning might be triggered only
when the file is updated. Advanced user guides will have examples of both of these functions.

The next section of code to notice is that the ID element is only displayed using a read-only
<xf: out put > tagif the formisin update mode.

{if ($id)
then (
<xf:output ref="id" class="id">
<xf: 1 abel >I D: </ xf: | abel >
</ xf : out put >

) else ()}

Thisshows some of the power of combining XQuery and XForms. Inthiscaseweareusing logic onthe
server to conditionally include portions of the form based on the context. The process of using context
such as mode, user, group, role and project is central to understanding how forms can be dynamically
created to precisely meet the needs of your users. No more "one sizefitsall". No moreforcing usersto
fill out field of formsthat are not relevant to their situation. XRX forms can al be dynamically created
directly asthey are needed. We can use both client and server logic to determine what features of the
form are enabled. XFormsincludes function called <xf : bi nd> that also uses X Path expressions to
determine if fields should be displayed. Thiswill also be covered in advanced tutorials.

The next item to note is that there are four different user interface controlsin this form. The first one
isaread-only output. The second isthe <xf : i nput > control that gathersinput in asingleline. The
third isa<xf : t ext ar ea> control that allows users to enter multi-line descriptions for definitions
of terms. Thelast control isthe<xf : sel ect 1> control that allowsthe user to select one value from
alist of values. For a complete discussion of the XForms controls we suggest you use the XForms
Wikibook at http://en.wikibooks.org/wiki/XForms. The Input Form Controls section goes through
each of the controls in the XForms specification. In addition to the standard controls there are other
controls that can also be integrated directly into XForms such as rich-text editors.

13

http://en.wikibooks.org/wiki/XForms

Getting Started

Each of the input controls has aref attribute that indicates what element in the instanceit is bound to.
If you have multiple instances and multiple models you many not be able to use all the default values
likein thisexample. Thisref attribute is how leaf elementsthe model get bound to each input control.
In general, when you are building simple flat forms there is a one-to-one correspondence between
the form elements and the instances in the model. Complex forms also allow you to have repeating
elements so you can add one-to-many structures in aform. This means that X Forms are not restricted
to managing flat list of elements. They can contain multiple nested elements with elements. Thiswill
also be discussed in advanced tutorials.

The fina part of the form (see Example 1.9, “XSLTForms processing instruction” contains the
instructions needed to place the XSLTForms processing instruction at the top of the file when it is
rendered.

Example 1.9. XSL TForms processing instruction

let $xslt-pi := processing-instruction xnl-styl esheet
{"type="text/xsl" href="/exist/rest/db/xforms/xsltforns/xsltfor
return ($xslt-pi, $form

You can also add a directive that will put the XSLTForms system into a debug mode by adding the
following.

| et $debug : = processing-instruction xsltforms-options {'debug="yes"'}
return ($xslt-pi, $debug, $form

Saving New Items

The save new process must first access the XML file that stores the next ID to be used to create a
unique file name. We store the next 1D to be used in a small XML file with only one element in the
root called next - i d (see Example 1.10, “/ db/ apps/terns/ edit/ next-i d. xm ”

Example 1.10./ db/ apps/terns/ edi t / next-i d. xm

<dat a>
<next -i d>6</ next -i d>
</ dat a>

The<next - i d> element is updated using an X Query "update function" when new items are saved
to the data collection. In this case we save the file using the number as a file name so the next file
saved will be 6.xml. After the file is saved the number is incremented so that the next - i d will be
7. This is similar to the auto-increment function in many other databases. eXist also has a counter
function that you can use. Using an arbitrary number asan ID is sometimes called aforeign key since
it isexterna to the actual datain the XML file.

When you create files, sometimes you want to create an identifier that is not just anumber but it might
also serve some meaning to alow usersto differentiate itemsin acollection. For exampl e adatabase of
countries might use acountry name asthefile name. Y ou can a so allow usersto pick anidentifier and
check for duplicates asthey enter the data (see Example 1.11, “/ db/ apps/ t er s/ edi t / save-
new. xq"). Thiswill be covered in advanced sections.

14

Getting Started

Example 1.11./ db/ apps/t er ns/ edi t / save- new. xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";

(: save-new. xq :)

| et $app-collection :="'/db/apps/terns'
| et $data-collection :="'/db/apps/terns/data'

(: this is where the form "POSTS" docunments to this XQuery using the POST net ho
l et $item:= request:get-data()

(: get the next IDfromthe next-id.xm file :)

l et $next-id-file-path := concat($app-collection,'/edit/next-id. xm")
let $id := doc($next-id-file-path)/datalnext-id/ text()

let $file := concat($id, '.xm")

(: this logs you into the collection :)
let $login := xmdb:|ogin($app-collection, '"admn', 'myadn npassword')

(: this creates the new file with a still-enpty id elenent :)
let $store := xnldb:store($data-collection, $file, $item

(: this adds the correct ID to the new docurment we just saved :)
l et $update-id := wupdate replace doc(concat ($data-collection, '/', $file))/terl

(: this updates the next-id.xm file :)
let $newnext-id := wupdate replace doc($next-id-file-path)/datal/next-id/ text()

(: we need to return the original ID nunber in our results, but $id has already
let $original-id := ($id - 1)

return
<htm >
<head>
<title>Save Conformation</title>
</ head>
<body>
Term Horme</ a>
<p>Term {$ori gi nal -i d} has been saved. </ p>
List all Terms
</ body>
</htm >

Updating Existing Items

The update function is simpler then the save function since it does not have to worry about cresting
a new file and incrementing a counter. It simply takes the incoming POST data and stores it in
the file. Note that by default this means that the entire data file is updated and reindexed upon the
store operation. eXist does contain versioning and it can be enabled by simply configuring a single
XML fileinthe/ db/ syst enf confi g area (see Example 1.12,“ / db/ apps/terns/ edit/
updat e. xq .

15

Getting Started

Example 1.12. / db/ apps/ternms/ edit/ update. xq

xquery version "1.0";

decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";

let $title := 'Update Confirnation'
| et $data-collection :="'/db/apps/terns/data'

(: this is where the form "POSTS" docunments to this XQuery using the POST met ho

l et $item:= request:get-data()

(: this logs you into the collection :)
let $login := xnldb:Ilogin($data-collection, "adm n', 'nyadm npassword')

(: get the id out of the posted docunent :)
let $id := $Sitemid/ text()

let $file := concat($id, '.xm")

(: this saves the new file and overwites the old one :)
let $store := xnldb:store($data-collection, $file, $item

return
<htm >
<head>
<title>{$title}</title>
</ head>
<body>
<hl>{$title}</hl>
<p>ltem {$i d} has been updat ed. </ p>
</ body>
</htm >

Deleting

Deleting itemsis much simpler then editing items. There are only two filesthat we will need to create.
Each of them take asingle REST parameter. Thefirst fileisaconfirmation XQuery script that just asks
the user “ Are you sure you want to delete thisterm?’. The second script actually does the deletion.

Confirming Delete

The delete confirmation script takesthe ID of theitem to be del eted and opens the document using the
doc() function. It then presents the user with details about the item and displays two choices. One to
delete and the other to cancel the delete. A CSSfile can be used to color the links appropriately with a
red warning indicator. See Example 1.13, “/ db/ apps/ terns/ edi t / del et e- confi rm xq”.

16

Getting Started

Example 1.13./ db/ apps/t erns/ edi t / del et e-confirm xq

xquery version "1.0";
decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";

let $id := request:get-paranmeter("id", "")
| et $data-collection :="'/db/apps/terns/datal’
| et $doc := concat($data-collection, $id, '.xm")
return
<htm >
<head>
<title>Delete Confirmation</title>
<styl e>
<! [CDATA
.warn {background-color: silver; color: black; font-size: 16pt; |ine-height:
11>
</style>
</ head>
<body>
Item Home > <a href="../views/list-item

<h1l>Are you sure you want to delete this ternP</hl>
Nane: {doc($doc)/term term name/text()}

Pat h: </ b> {$doc}

<a cl ass="warn" href="del ete.xq? d={$id}">Yes - Delete This Ternx/a>

<br/ >

Cancel (Back to
</ body>
</htm >

The Delete Script

The delete script (see Example 1.14, “ /[db/ apps/terns/ edi t/ del ete. xq ") also takesa
single REST parameter of the ID

17

Getting Started

Example 1.14. / db/ apps/terns/ edit/ del et e. xq

xquery version "1.0";

decl are option exist:serialize "method=xhtm nedi a-type=text/htm indent=yes";
| et $data-collection :="'/db/apps/terns/data'

(: this script takes the integer value of the id parameter passed via get :)
let $id := request:get-parameter('id , '")

(: this logs you into the collection :)
let $login := xnldb:Ilogin($data-collection, "admi n', 'nyadm npassword')

(: this constructs the filename fromthe id :)
let $file := concat($id, '.xm")

(: this deletes the file :)

let $store := xnl db:renove($data-coll ection, $file)
return
<htm >
<head>
<title>Delete Ternx/title>
<styl e>
<! [CDATA
.warn {background-color: silver; color: black; font-size: 16pt; |ine-height
11>
</style>
</ head>
<body>
Ternms Hone > <a href="../vi

<h1>Termid {$id} has been renoved. </ hl>
</ body>
</htm >

The Application Home Page

A simple application home page can be a description of the application and a static list of links to the
main entry points of the application: the item lister, the search form, the create new and the reindex.
The index page can be a static HTML page as described in Example 1.15, “/ db/ apps/ t er ns/
i ndex. ht m ". SeeFigure 1.7, “Output of i ndex. ht m ” for the output.

18

Getting Started

Example 1.15./ db/ apps/t erns/ i ndex. ht n

<htm >
<head>
<title>Terms</title>
</ head>
<body>
<h1>Ter ns</ hl>
List Itens

Search</ a>

Create New Ternx/a>

Rei ndex the coll ection

</ body>
</htm >

Figure 1.7. Output of i ndex. ht m

Terms

List [tems
Search
Creaue New Term

Next Steps

If you have managed to learn all of the CRUDS functions you are now ready to move on the some
more complex examples. Here are some suggestions for next steps.

1. Create a collection / db/ apps/ nodul es and add afile called st yl e. xm in that collection.
Add XQuery functions for st yl e: header (), styl e: footer () and then reference these
functionsin each of your HTML web pages.

2. Changethel i st -itens. xq touse HTML tablesto view each item.
3. UsetheeXist permission systemto create agroupscalled “editor” and agroup called “term-admin”.
Change the group permissions on the edit and admin collectionsto only allow usersin these groups

to be able to access these collections.

4. Inthel i st-itemns. xq query, use XQuery sequences to pre-sort items and then display only an
initial subset of the data using the subsequence function.

5. Add URL parameters st art and numto the list-items to indicate what record to start to display
and how many records to display.

19

Getting Started

6. Learn how to create one-to-many relationships in your forms using the <xf : r epeat > element.
For example create a form that allows you to add multiple phone numbers to a contact record or
multiple authors to a book entry.

7. Learn how to use XForms binding to conditionally display elementsin aform.
8. Get fancy with how tables of data are displayed. Add sorting to table columns.

9. Add security to your forms by only alowing people in an "edit" group to be able to write to the
data collection.

Createroles for users such as editor, publisher and then copy the XML filesto aremote host using
theht t p-client () functions.

10.Add forms that edit complex data using in-browser lists and inspectors.

11.Create forms that manage document workflows. Add workflow steps that flow to the right as they
expand.

12 Create advanced search forms that use multiple selection criteria such as document types, authors
or date ranges.

13.Create complex business logic in how selection lists can be controlled. Use one selection list to
control the values of a second selection list.

14.Moveall of the codesinthe publish-status selection list into an XML fileand placeit inacollection
caled code- t abl es. Then add an instance to the form that reads this code table into the form.

15.Add a XQuery function that will take a status codes value and return its label.

16.Modify the system configuration file for the / db/ apps/ t er ms/ dat a collection to enable
versioning when items are updated.

20

References

All of these topics and many more are covered in the XQuery, XForms and XRX Wikibooks. Y ou can use the
search tools within Wikibooks to find how specific elements are used within each of the examples.

Wiki Books

[xforms-wiki] XForms Wikibook. http://en.wikibooks.org/wiki/XForms. Dan McCreary.
[xrx-wiki] XRX Wikibook. http://en.wikibooks.org/wiki/XRX. Dan McCreary.
[xquery-wiki] XQuery Wikibook. http://en.wikibooks.org/wiki/XQuery. Chris Wallace. Dan McCreary.

[dubinko] XForms Essentials. Micah Dubinko. O'Reilly Publishing. Copyright © 2003.

Articles

[wikipedia-xrx] XRX (web application architecture). http://en.wikipedia.org/wiki/XRX_
%28web_application_architecture%29.

[tennison-xrx-in-exist] XRX: XQueriesin eXist. Jeni Tennison. http://news.oreilly.com/2008/07/xrx-xqueries-in-
exist.html.

[simple_elegant_disruptive] XRX: Smple, Elegant, Disruptive. Dan McCreary. http://www.oreillynet.com/xml/
blog/2008/05/xrx_a simple_elegant_disruptiv_1.html.

Books

[walmsley] XQuery. PriscillaWamdey. O'Reilly Publishing. Copyright © 2007.

[dubinko] XForms Essentials. Micah Dubinko. O'Reilly Publishing. Copyright © 2003.

21

	A Beginners Guide XRX
	Table of Contents
	Chapter 1. Getting Started
	Introduction
	Intended Audience
	Getting Started
	Terms and Concepts Used

	Collection and File Conventions
	Example Data: Business Terms
	Views
	Listing Items
	Viewing an Individual Item

	Searching Items
	Search Configuration File
	Reindexing
	The Search Form
	The Search Service
	Search Results

	Editing
	Model-View-Binding
	The Edit Query
	Saving New Items
	Updating Existing Items
	Deleting
	Confirming Delete

	The Delete Script

	The Application Home Page
	Next Steps

	References

