XRX Web Application Architecture

Dan McCreary

Dan McCreary & Associates

August, 2008

Version 0.01

Abstract

This document describes the XRX web application architecture. XRX standard for XForms on the Client, REST Interfaces and XQuery on the server. XRX is a hybrid architecture that leverages the combination of three distinct but compatible web standards. This document describes XRX architecture elements, the architectural benefits, design patterns, and relationship between the XRX architecture and other application architectures. We close with a discussion about some of the impediments to XRX adoption and an analysis of future technologies that may accelerate XRX adoption.
Architectural Elements

As the name describes, XRX leverages three core technologies as well as technologies that are directly imbedded in these three standards. Although many of these architectural elements are discussed in other papers, the usage and benefits of these combination of tools is not evident to the casual observer.
XForms – XForms consists of just over 20 data elements that can be added to any XHTML web page. XForms usually care a distinct namespace. Because of this web forms designers can quickly learn the XForms elements and integrate them into existing HTML forms. XForms itself has many architectural elements that benefit the overall XRX architecture.
Model-View-Binding (MVB) – XForms stores models directly within the client application. In many cases the client is usually a web browser with some additional functionality but it can also a full desktop application using technologies such as XUL. XForms views are about bound to data elements within the model using a variety of referencing techniques.

CSS –XForms standardizes and leverages CSS standards for interactive web applications. Functions such as required fields, read-only fields, invalid fields, out-of-range fields and error messages can be controlled and updated by all site application using a single CSS file. Users that are familiar with CSS can quickly style complex XForms applications and these applications can be quickly made consistent with site-wide style sheet standards.
Explicit Client Business Rules – XForms include the ability to use XML data validation technologies such as XML Schemas. In addition a technology called bind statements that allow form-based business rules to be specified in terms of XPath expressions. Bind expressions can be use to calculate values (such as a sum) or conditionally set one field as required if another field has a specific value. Because bind expressions are just a series of XML elements they can be generated directly from a rules engine or other documents such as and XML Schema. For example all of the required fields, data types as well as conditional views with a form can be generated by external reports on enterprise rules files.
The Client Dependency Graph – Each XForms client application has its own dependency graph for updating user interface elements. This dependency graph relives the burden of having to keep track of discrete screen update rules when the user interface changes. For example a single line summary of a complex record displayed in an inspector panel will be automatically updated if either part of the form changes.
The Web Cache – REST takes advantage of the fact that their may be many web-caches between the client and the server. This cache allows reusable application elements such as images, css files, selection lists and rules files from being reloaded from the closest resource. Many forms need to reuse form elements such as selection lists and images. These resources can be cached on the local client using the same web caching algorithms that are being used to manage web pages.
Customizable Server Data Grain – One of the disadvantage to using "cloud computing" services such as Amazon's S3 system [reference] is that there is little flexibility to change the grain of server objects. When an object ID is sent to the server, the entire data object must be fetched to the client, even if only a small percentage of the data is needed. This is an appropriate architecture for some applications and certainly benefits services that charge per megabyte transferred, but in most cases it is both much more expensive, slow and wasteful of bandwidth. XQuery provides data to be transferred to the client based on the results of an XPath expression. So if a patient's health care records are logically grouped into subsections such as prior history or current status, only the relevant sections of a patients file needs to be transferred to the client. Until S3 or other systems provide a way to limit data using XPath expressions they will never be competitive with XQuery-based cloud computing services.
Context-Aware Forms – In the past, forms tended to be static pages where the business rules were hard-coded with HTIM and JavaScript. XForms allows each field in a form to apply as-you-type business rules that can exist in either the form itself or at the server using a submission on keystroke. Because XForms has a rich interaction model with the server it is now easier then ever to customize XForms elements based on the context of the situation. Context include items such as the user's role, their department, job-function, or timing of the process being used. For example the sort order of a list or records may be customized to a the role of a person, some fields may become mandatory based on one or more rules in the bindings or selection lists may be narrowed based on the document status. The ability of XRX applications to be made context aware give XForms applications new usability levels that other application architectures would allow only at great cost.

Understand the potential of context-aware forms is one of the most challenging aspects of XRX adoption. Many business processes today

Benefits of XRX

Simplicity

Because the data representation of the model on the client (XML) is the same and the data representation on the server, there is no need for translation from one format to another. Traditional HTML forms application store data in key-value pairs in a web browsers, in object hierarchies on a middle tier and in relational structures in the persistence layer. Each translation from one data format to the other required complex and error prone translation.
Rapid prototype development

Because there is no translation between client, middle-tier and server, XRX applications can be used as a rapid prototyping environment. XForms can also be easily generated directly from models such as XML Schema files. When used in conjunction with metadata services XRX applications

Agility

In the past applications hard-coded business rules within static HTML and JavaScript files. These files needed to be manually updated each time code tables changed, business rules changed or data validation rules changed. Because XForms elements can be dynamically generated many aspects of XForms can be derived from central models either at design-time or run-time. This model-driven approach makes is far easier for a small group of developers to easily maintain a large family of reusable elements that are derived from a common model.
Consistency

Because XRX elements are derived from a central model, form can be much more consistent. If new business rules are changed within a model all forms that use those rules can be quickly updated.
Compliance with w3c standards

XRX leverages CSS, XML Schema data types, XML Schemas, XPath, XForms and XQuery

XRX Design Patterns

Single Statement Update – Even complex hierarchal form data can be stored and update with a single line of code.
Content Routing – when XML content arrives at the server, it receiving save procedure can rout the XML data to be stored at a location that is dependant on the content type.
Auto form generation – because much of the behavior about how form data is saved is stored on the server, client forms can all be designed using a consistent set of save procedures. These procedures can make the forms simple enough that

"Cool" URLs – RESTful URL design can be made to
Comparison of with other Web Application Architectures
LAMP – Linux, Apache, MySQL and PHP

The architecture most frequently compared with XRX.

J2EE – Java 2 Enterprise Edition

Why do we need Java again? Just because we teach Java in high-school, technical school and college does not imply that it is an appropriate language for developing web applications.
XRX Challenges
Dynamic Page Updates – The HTML web was initially designed to produce static documents. Tables were considered static elements and little thought was given to what happens when users enter interactive data that might resize the dimensions of a table. As a result, adding code dynamically resize tables has proven to be very difficult to be challenging.

Understanding XForms Dependency Graphs – Many novice developers do not appreciate the need for the dependency graph to be informed when content of a form changes. As a result, new developers do not use the XForms setvalue instruction or the insert origin instructions as they were intended. This causes frustration for new developers that have not taken the time to understand the power of the dependency graph.
Lack of Good Example – Although many application architects consider XRX a superior architecture due to its purity, the lack of large vendors (with the possible exception of IBM) makes XRX example difficult to come by.
The Future of XRX

Today the sweet spot for XRX technologies appear to be data systems that have both document-centric needs and complex user interface development.

Extending XQuery Standards – One of the reasons that the eXist system seems to be so popular among developers is that eXist has extended the XQuery 1.0 standard to include functions for updates, getting URL parameters, managing HTTP POST data, session management and other functions typically found in a web application server. If these extensions become standardized and supported by both database and web server vendors this will make XRX
Full-text Searching – XQuery may soon have standardized support of full text searching [reference]

Support for Massively Parallel Servers – Due to the inherently declarative nature of XQuery, it is possible that future implementations will incorporate many of the algorithms.

Rule Interchange Form (RIF) and Bind Statements – The w3c is working on finalizing a rule interchange format.
XProc – XML Pipeline Processing Languages – Many of the complex routing and versioning issues that are done today with XQuery can be made more precise by servers integrating XML pipeline processors. The w3c standard XProc will create a standard language for XML pipeline processing.

XML Binding Language – Today there are many limitations to cascading style sheets. A web site author can not use a cascading style sheet to do simple things such as specify the format of currency using picture formats. For example $0,000.00 to specify a leading dollar sign followed by comma separated numbers ever three digits with two decimal places. This can be done by using the XML Binding language or XBL. Lack of support in many browsers prevents these technologies from widespread adoption.
XML Web/database Servers and Application Server Standards
4

